Factors affecting GNSS heighting

Dr Craig Roberts
Senior Lecturer
Surveying and Geospatial Engineering

GPS

- GPS signals are weak (20,200km away)
- Amplifiers raise signal from noise but can’t position indoors
- Can’t calibrate a GPS receiver
- GPS positioning is vulnerable

Positioning Modes

Handheld point positioning using pseudorange (code) measurements

Differential positioning using pseudorange (code) measurements - static

Real time differential positioning using carrier phase or code measurements

Differential positioning using carrier phase measurements - static

GPS position modes and accuracies

- **Point positioning** (SPS) ±5-10m (100-150m with SA)
- Point positioning (PPS) ±2-5 metres (not for civil users)

- **Differential GPS** >1 metre
 - WADGPS (wide area differential GPS)
 - LADGPS (local area differential GPS)

- **Static Surveying** Carrier Phase GPS
 - Relative
 - Highest accuracy
 - Horizontal: ±5 mm + 1 ppm
 - Vertical: ±10 mm + 2 ppm

- **Real-time Kinematic** (with OTF (on-the-fly) algorithms)
 - Risk in the determination of wrong integer ambiguity
 - Highest productivity
 - Horizontal: ±10 mm + 1 ppm
 - Vertical: ±20 mm + 2 ppm
What is GNSS?
Global Navigation Satellite Systems

MSAS
IRNSS
QZSS
etc...
GNSS Status

- GPS – Full Operational Capability (FOC)
- GLONASS - Full Operational Capability (FOC)
- BEIDOU – 16 Operational SVs in GEO, IGSO and MEO orbits
- GALILEO – 6 Operational test satellites

Glonass does not improve precision/accuracy of positioning only robustness.

Galileo and Beidou will have better ranging precision and stronger signals = higher precision positioning and better multipath resistance

GNSS Heighting

GPS is weak in height. Generally 2x worse than position.

Image of distance between you and four satellites

A point where four distances meet

ISNSW Southern Group, June conference, Bowral 19 June 2015
GNSS Errors

As baseline lengths increase ionosphere and troposphere inhibit fast and reliable ambiguity resolution - *initialisation*

Atmospheric Errors

- GPS Satellite ~ 20,200km (zenith) from surface
- Troposphere – Neutral layer ~ 0 – 50km from surface
- Ionosphere – Electrical layer ~ 50 – 1000km from surface
Multipath

- Multipath is the reflection of the GPS signal as it travels from the satellite before arriving at the antenna.
- Reflective sources include roofs, walls, trees, water & vehicles.
- Multipath at base will propagate to rover.

Multipath

- Pseudorange multipath can be up to 10m.
- Carrier phase multipath up to $\frac{1}{4} \lambda = 5-6$ cm.
- Multipath "averages out" over a period from several minutes to a quarter of an hour due to changing satellite geometry.
- RTK multipath can be dangerous.
- Multipath repeats on a daily basis (~4 mins) for the same baseline.
- GPS manufacturers who claim to mitigate multipath do so only for the pseudorange measurements.
Avoiding Multipath

- Make a careful selection of antenna site in order to avoid reflective environments.
- Use a good quality antenna that is multipath-resistant.
- Use an antenna groundplane or choke-ring assembly.
- Use a receiver that can internally digitally filter out the effect of multipath signal disturbance.
- Do not observe low elevation satellites (signals are more susceptible to multipath).
- In the case of carrier phase positioning, longer observation sessions will tend to diminish the impact of multipath on the final baseline results.

Antenna Phase Centre Variation

- Unique to each antenna type
- Two components
 - Offset up to 100mm
 - Zenith dependent up to 15mm
- Different for L1 & L2
- Old models relative, new models are absolute
- Models differentiated by IGS naming convention
 - Make sure your Rx recognises the name!!

(Courtesy Clark & Schupler, 1996)
Antenna Phase Centre Models

APCV general model

Ashtech model for Nowra CORSnet NSW site

20 Character IGS antenna name

Concept of a null antenna

Tip 5: Antenna Models & Heights

- Only use an absolute (relative) antenna model.
- Use IGS models.
- Talk to your local GNSS dealer.

Antenna Heights:
- vertical
- cm & inches
- fixed / change
- ARP
Elevation Mask Angle to reduce errors

Usually set 15° to aid initialisation. Reduces errors from:
- Troposphere, Ionosphere & Multipath

Multipath at the base is sent to the rover
- Up to 6 cm for phase measurements
- Does not average out for RTK surveying

Does GPS work under trees?

- Nowadays due to improved satellite tracking technology, weaker signals can be observed under trees, BUT…
- Signals are noisier, weaker and therefore more likely to be subject to multipath and diffraction.
- Positions may not be accurate despite quality indicators showing good solutions.
- L2C** promises better results and L5 better again.

Tested with student thesis project. Results showed a slight improvement with L2C. (MacGillivray, 2012)
Signals passing through trees will show increased RMS and maybe SD. Sometimes position remains accurate but height is vulnerable (empirical testing only).

Data set from Volker Janssen

- Date: 4th – 6th January 2011
- Site: Macquarie University
- Instrument: 6 Leica Viva GS15 GNSS receivers
- ‘swing’ located at ~13:15 to 13:45
- ‘swing’ magnitude of 100mm
Analysis

- Date: 4th January 2011
- Time: 11:45 to 13:59
- Site: Macquarie University
- Software: Leica Geo Office
- CORSnet sites: CWN2, PBOT and VLWD

<table>
<thead>
<tr>
<th>Site: Macquarie University</th>
<th>Single Base @17km</th>
<th>Single Base @21km</th>
<th>Single Base @24km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 4th January 2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time: 11:45 to 13:59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Obs. Within ± 10mm</td>
<td>39.0%</td>
<td>40.9%</td>
<td>33.4%</td>
</tr>
<tr>
<td>% Obs. Within ± 25mm</td>
<td>93.0%</td>
<td>93.3%</td>
<td>95.5%</td>
</tr>
<tr>
<td>% Obs. Within ± 50mm</td>
<td>99.2%</td>
<td>97.8%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Numb of obs</td>
<td>7215</td>
<td>7215</td>
<td>7214</td>
</tr>
</tbody>
</table>

**Statistics of the vertical component of the data

Analysis

Elevation of GPS satellites on 4th January 2011 from noon to 2pm

Reference site: CWN2
Analysis

Vertical component precision 4th January 2011
Reference site: PBOT

Elevation of GPS satellites on 4th January 2011 from noon to 2pm

Vertical component precision 4th January 2011
Reference site: VLWD

Elevation of GPS satellites on 4th January 2011 from noon to 2pm
What accuracy can we claim?

- ????
- Do your checks on known control. Site transformation?
- Double occupy
- How many sats do you have? How quickly is it initialising?
- Is it a multipath free environment?
- Are there any radio interuptors in the region?
- RTK ±20mm, Static (20 mins) should be better ±10mm.
- Check with Total station but also limited by distance.

Over to you Dave